COMPLEMENTARY ANGLES

Complete SSC CGL Master Notes

Comprehensive Educational Content • Created by GovtExamPrep

1. ANGLE PAIR DEFINITIONS

Complementary Angles

Complementary Angles: Two angles whose sum is 90°.

Example: 30° and 60° are complementary because $30^{\circ} + 60^{\circ} = 90^{\circ}$

Angle Pair Types:

- Complementary: Sum = 90°
- Supplementary: Sum = 180°
- Adjacent: Share common vertex and side
- Linear Pair: Adjacent and supplementary

Supplementary Angles

Supplementary Angles: Two angles whose sum is 180°.

Example: 120° and 60° are supplementary because $120^{\circ} + 60^{\circ} = 180^{\circ}$

2. TRIGONOMETRIC RATIOS OF COMPLEMENTARY ANGLES

Fundamental Relationships

For complementary angles (θ and 90° - θ):

```
\sin(90^{\circ} - \theta) = \cos \theta

\cos(90^{\circ} - \theta) = \sin \theta

\tan(90^{\circ} - \theta) = \cot \theta

\cot(90^{\circ} - \theta) = \tan \theta

\sec(90^{\circ} - \theta) = \csc \theta

\csc(90^{\circ} - \theta) = \sec \theta
```

Memory Technique

Easy to Remember:

- Sine and Cosine are co-functions
- Tangent and Cotangent are co-functions
- Secant and Cosecant are co-functions
- "Co" means complementary
- For (90° θ), change trigonometric ratio to its co-function

3. APPLICATIONS & PROBLEMS

Finding Angle Measures

Example 1: If angle A and angle B are complementary and $A = 35^{\circ}$, find B.

Solution:

- $A + B = 90^{\circ}$
- $35^{\circ} + B = 90^{\circ}$
- B = 90° 35° = **55°**

Example 2: Two complementary angles are in ratio 2:3. Find the angles.

Solution:

- Let angles be 2x and 3x
- $2x + 3x = 90^{\circ}$
- $5x = 90^{\circ} \Rightarrow x = 18^{\circ}$
- Angles: $2 \times 18 = 36^{\circ}$ and $3 \times 18 = 54^{\circ}$

4. TRIGONOMETRIC PROBLEMS

Using Complementary Relationships

Example: Evaluate sin 35°/cos 55°

Solution:

- Note: 55° = 90° 35°
- $\cos 55^\circ = \cos(90^\circ 35^\circ) = \sin 35^\circ$
- Therefore, $\sin 35^{\circ}/\cos 55^{\circ} = \sin 35^{\circ}/\sin 35^{\circ} = 1$

Example: If $\sin 3A = \cos(A - 26^{\circ})$ and 3A is acute, find A.

Solution:

- $\sin 3A = \cos(A 26^\circ)$
- $\sin 3A = \sin[90^{\circ} (A 26^{\circ})]$
- $\sin 3A = \sin(116^{\circ} A)$
- $3A = 116^{\circ} A$
- $4A = 116^{\circ} \Rightarrow A = 29^{\circ}$

5. GEOMETRIC APPLICATIONS

Right Triangle Properties

In a right-angled triangle:

- The two acute angles are always complementary
- Their sum is always 90°
- This is because total angles in triangle = 180° and right angle = 90°
- So remaining two angles sum to 90°

Parallel Lines & Transversals

In parallel lines cut by transversal:

- Corresponding angles are equal
- Alternate interior angles are equal
- Co-interior angles are supplementary
- · Vertically opposite angles are equal

6. QUADRILATERAL ANGLE PROPERTIES

Cyclic Quadrilateral

In cyclic quadrilateral:

- Sum of opposite angles = 180°
- $\angle A + \angle C = 180^{\circ}$
- $\angle B + \angle D = 180^{\circ}$

Other Quadrilaterals

Angle Properties:

- Parallelogram: Opposite angles equal, adjacent angles supplementary
- Rectangle: All angles 90°
- Square: All angles 90°
- Rhombus: Opposite angles equal, adjacent angles supplementary
- Trapezium: Angles on same side of leg are supplementary

7. POLYGON ANGLE PROPERTIES

Regular Polygons

For regular polygon of n sides:

- Each interior angle = $[(n-2) \times 180^{\circ}]/n$
- Each exterior angle = $360^{\circ}/n$
- Sum of interior angles = $(n-2) \times 180^{\circ}$
- Sum of exterior angles = 360°

Interior-Exterior Relationship

For any polygon:

Interior angle + Exterior angle = 180° They form a linear pair at each vertex

8. SSC CGL PRACTICE PROBLEMS

Problem Set with Solutions

Problem 1: If $\tan 2A = \cot(A - 18^\circ)$, find A.

Solution:

- $tan 2A = cot(A 18^\circ)$
- $tan 2A = tan[90^{\circ} (A 18^{\circ})]$
- $tan 2A = tan(108^{\circ} A)$
- $2A = 108^{\circ} A$
- $3A = 108^{\circ} \Rightarrow A = 36^{\circ}$

Problem 2: Evaluate: sin 25° cos 65° + cos 25° sin 65°

Solution:

- $\cos 65^\circ = \cos(90^\circ 25^\circ) = \sin 25^\circ$
- $\sin 65^\circ = \sin(90^\circ 25^\circ) = \cos 25^\circ$
- Expression becomes: $\sin 25^\circ \times \sin 25^\circ + \cos 25^\circ \times \cos 25^\circ$
- = $\sin^2 25^\circ + \cos^2 25^\circ = 1$

Problem 3: Two complementary angles differ by 20°. Find the angles.

Solution:

- Let angles be x and x + 20
- $x + (x + 20) = 90^{\circ}$
- $2x + 20 = 90^{\circ}$
- $2x = 70^{\circ} \Rightarrow x = 35^{\circ}$
- Angles: 35° and 55°

9. IMPORTANT FORMULAS & IDENTITIES

Trigonometric Identities

Identity	Formula
Pythagorean Identity	$\sin^2\theta + \cos^2\theta = 1$
Tangent Identity	$\tan \theta = \sin \theta / \cos \theta$
Cotangent Identity	$\cot \theta = \cos \theta / \sin \theta$
Secant Identity	sec θ = 1 / cos θ
Cosecant Identity	cosec θ = 1 / sin θ

Angle Sum Formulas

```
sin(A + B) = sin A cos B + cos A sin B

cos(A + B) = cos A cos B - sin A sin B

tan(A + B) = (tan A + tan B) / (1 - tan A tan B)
```

10. EXAM TIPS & STRATEGIES

Problem Solving Approach

Key Strategies:

- Always check if angles are complementary (sum to 90°)
- Use trigonometric identities to simplify expressions
- Remember that complementary angles have special relationships
- For geometry problems, look for right triangles
- Practice mental calculation for common angle pairs

Common Mistakes to Avoid

Avoid These Errors:

- Confusing complementary (90°) with supplementary (180°)
- Forgetting to convert between degrees and radians
- Misapplying trigonometric identities
- Not checking if angles are acute when using complementary relationships
- Overlooking the fact that only acute angles can be complementary

© 2023 GovtExamPrep • SSC CGL Preparation Material

This content is for educational purposes only.